Цвет, температура и состав звезд. Почему одни звезды кажутся ярче чем другие? Самые крутые бывшие звезды

Звёздная величина

© Знания-сила

Птолемей и «Альмагест»

Первую попытку составить каталог звёзд, основываясь на принципе степени их светимости, предпринял элли́нский астроном Гиппарх из Никеи во II веке до н.э . Среди его многочисленных трудов (к сожалению, они почти все утеряны) фигурировал и «Звёздный каталог» , содержащий описание 850 звёзд, классифицированных по координатам и светимости. Данные, собранные Гиппархом, а он, кроме этого, открыл и явление прецессии, были проработаны и получили дальнейшее развитие благодаря Клавдию Птолемею из Александрии (Египет) во II в. н.э . Он создал фундаментальный опус «Альмагест» в тринадцати книгах. Птолемей собрал все астрономические знания того времени, классифицировал их и изложил в доступной и понятной форме. В «Альмагест» вошел и «Звёздный каталог». В его основу были положены наблюдения Гиппарха, сделанные четыре столетия назад. Но «Звёздный каталог» Птолемея содержал уже примерно на тысячу звёзд больше.

Каталогом Птолемея пользовались практически везде в течение тысячелетия. Он разделил звёзды на шесть классов по степени светимости: самые яркие были отнесены́ к первому классу, менее яркие - ко второму и так далее. К шестому классу относятся звёзды, едва различимые невооруженным глазом. Термин «сила свечения небесных тел», или «звёздная величина», используется и в настоящее время для определения меры блеска небесных тел, причём не только звёзд, но также туманностей, галактик и других небесных явлений.

Блеск звёзд и визуальная звёздная величина

Глядя на звёздное небо, можно заметить, что звёзды различны по своей яркости или по своему видимому блеску. Наиболее яркие звёзды называют звёздами 1-й звёздной величины; те из звёзд, которые по своему блеску в 2,5 раза слабее звёзд 1-й величины, имеют 2-ю звёздную величину. К звёздам 3-й звёздной величины относят те из них. которые слабее звёзд 2-й величины в 2,5 раза, и т.д. Самые слабые из звёзд, доступных невооруженному глазу, причисляют к звёздам 6-й звёздной величины. Нужно помнить, что название «звёздная величина» указывает не на размеры звёзд, а только на их видимый блеск.

Всего на небе наблюдается 20 наиболее ярких звёзд, о которых обычно говорят, что это звёзды первой величины. Но это не значит, что они имеют одинаковую яркость. На самом деле одни из них несколько ярче 1-й величины, другие несколько слабее и только одна из них - звезда в точности 1-й величины. Такое же положение и со звёздами 2-й, 3-й и последующих величин. Поэтому для более точного обозначения яркости той или иной звезды используют дробные величи́ны . Так, например, те звёзды, которые по своей яркости находятся посредине между звёздами 1-й и 2-й звёздных величин, считают принадлежащими к 1,5-й звёздной величине. Есть звёзды, имеющие звёздные величи́ны 1,6; 2,3; 3,4; 5,5 и т.д. На небе видно несколько особенно ярких звёзд, которые по своему блеску превышают блеск звёзд 1-й звёздной величины. Для этих звёзд ввели нулевую и отрицательные звёздные величи́ны . Так, например, самая яркая звезда северного полушария неба - Вега - имеет блеск 0,03 (0,04) звёздной величины, а ярчайшая звезда - Сириус - имеет блеск минус 1,47 (1,46) звёздной величины, в южном полушарии ярчайшей звездой является Кано́пус (Кано́пус расположен в созвездии Киль. Видимый блеск звезды минус 0,72, Кано́пус обладает наибольшей светимостью среди всех звёзд в радиусе 700 световых лет от Солнца. Для сравнения, Сириус всего лишь в 22 раза ярче, чем наше Солнце, но он намного ближе к нам, чем Кано́пус. Для очень многих звёзд среди ближайших соседей Солнца Кано́пус является самой яркой звездой на их небосклоне.)

Звёздная величина в современной науке

В середине XIX в. английский астроном Норман По́гсон усовершенствовал метод классификации звёзд по принципу светимости, существовавший со времён Гиппарха и Птолемея. По́гсон учёл, что разница в плане светимости между двумя классами составляет 2,5 (например сила свечения звезды третьего класса в 2,5 раза больше, чем у звезды четвёртого класса). По́гсон ввёл новую шкалу, по которой разница между звёздами первого и шестого классов составляет 100 к 1 (Разность в 5 звёздных величин соответствует изменению блеска звёзд в 100 раз). Таким образом, разница в плане светимости между каждым классом составляет не 2,5, а 2,512 к 1 .

Система, разработанная английским астрономом, позволила сохранить существующую шкалу (деление на шесть классов), но придала ей максимальную математическую точность. Сначала ноль-пунктом для системы звёздных величин была выбрана Полярная звезда, её звездная величина в соответствии с системой Птолемея была определена в 2,12. Позже, когда выяснилось, что Полярная звезда является переменной, на роль ноль-пункта были условно определены звёзды с постоянными характеристиками. По мере совершенствования технологий и оборудования учёные смогли определить звёздные величины с большей точностью: до десятых, а позже и до сотых единиц.

Связь между видимыми звёздными величинами выражается формулой По́гсона: m 2 -m 1 =-2,5log (E 2 /E 1) .

Количество n звёзд с визуальной звездной величиной свыше L


L
n
L
n
L
n
1 13 8 4.2*10 4 15 3.2*10 7
2 40 9 1.25*10 5 16 7.1*10 7
3 100 10 3.5*10 5 17 1.5*10 8
4 500 11 9*10 5 18 3*10 8
5 1.6*10 3 12 2.3*10 6 19 5.5*10 8
6 4.8*10 3 13 5.7*10 6 20 10 9
7 1.5*10 4 14 1.4*10 7 21 2*10 9

Относительная и абсолютная звёздная величина

Звёздная величина, измеренная при помощи специальных приборов, вмонтированных в телескоп (фото́метрами), указывает, какое количество света от звезды доходит до наблюдателя на Земле. Свет преодолевает расстояние от звезды до нас, и, соответственно, чем дальше расположена звезда, тем более слабой она кажется. Другими словами, тот факт, что звёзды различаются по блеску, ещё не дает полной информации о звезде. Очень яркая звезда может иметь большую светимость, а находиться очень далеко и потому иметь очень большую звёздную величину. Для сравнения яркости звёзд независимо от их расстояния до Земли было введено понятие «абсолютная звёздная величина» . Для определения абсолютной звездной величины необходимо знать расстояние до звезды. Абсолютная звездная величина М характеризует блеск звезды на расстоянии в 10 парсек от наблюдателя. (1 парсек = 3,26 светового года.). Связь абсолютной звездной величины М, видимой звездной величины m и расстояния до звезды R в парсеках: M = m + 5 – 5 lg R.

Для сравнительно близких звёзд, удалённых на расстояние, не превышающие нескольких десятков парсек, расстояние определяется по параллаксу способом, известным уже двести лет. При этом измеряют ничтожно малые угловые смещения звёзд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Параллаксы даже самых близких звёзд меньше 1" . С понятием параллакса связано название одной из основных единиц в астрономии – парсек. Парсек – это расстояние до воображаемой звезды, годичный параллакс которой равен 1" .

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!
  • Астрономия
    • Перевод

    Знаете ли вы их все, а также причины их яркости?

    Я голоден до новых знаний. Смысл в том, чтобы каждый день учиться, и становиться всё ярче и ярче. Вот в чём суть этого мира.
    - Jay-Z

    Когда вы представляете себе ночное небо, вы, скорее всего, думаете о тысячах звёзд, мерцающих на чёрном покрывале ночи, нечто, что можно по-настоящему увидеть только вдалеке от городов и других источников светового загрязнения.


    Но те из нас, кто не может на периодической основе наблюдать такое зрелище, упускают тот факт, что звёзды, видимые из городских районов с высоким световым загрязнением, выглядят по-другому, нежели чем при просмотре в тёмных условиях. Их цвет и относительная яркость сразу отделяют их от соседних с ними звёзд, и у каждой из них есть своя собственная история.

    Жители северного полушария, вероятно, сразу могут узнать Большую Медведицу или букву W в Кассиопее, а в южном полушарии самым известным созвездием должен быть Южный Крест. Но эти звёзды не относятся к десятке самых ярких!


    Млечный путь рядом с Южным Крестом

    У каждой звезды есть свой собственный жизненный цикл, к которому она привязана с момента рождения. При формировании любой звезды доминирующим элементом будет водород – самый распространённый элемент во Вселенной – и её судьба определяется лишь её массой. Звёзды массой в 8% от солнечных могут зажигать реакцию ядерного синтеза в ядре, синтезируя гелий из водорода, и их энергия постепенно передвигается изнутри наружу и изливается во Вселенную. Звёзды малой массы красные (из-за низких температур), тусклые, и сжигают своё топливо медленно – самым долгоживущим предначертано гореть триллионы лет.

    Но чем больше звезда набирает массы, тем горячее её ядро, и тем больше регион, в котором идёт ядерный синтез. Ко времени достижения солнечной массы звезда попадает в класс G, и её время жизни не превышает десяти миллиардов лет. Удвойте солнечную массу, и вы получите звезду класса А, ярко-голубую, и живущую менее двух миллиардов лет. А самые массивные звёзды, классов О и В, живут всего несколько миллионов лет, после чего у них в ядре заканчивается водородное топливо. Не удивительно, что самые массивные и горячие звёзды также и самые яркие. Типичная звезда класса А может быть в 20 раз ярче Солнца, а самые массивные – в десятки тысяч раз!

    Но как бы звезда ни начала жизнь, водородное топливо в её ядре заканчивается.

    И с этого момента звезда начинает сжигать более тяжёлые элементы, расширяясь в гигантскую звезду, более холодную, но и более яркую, чем изначальная. Фаза гиганта короче, чем фаза сжигания водорода, но её невероятная яркость делает её видимой с гораздо больших расстояний, чем те, с которых была видна изначальная звезда.

    Учтя всё это, перейдём к десятке ярчайших звёзд в нашем небе, по возрастанию яркости.

    10. Ахернар . Яркая голубая звезда, массой в семь раз больше, чем у Солнца, а яркостью – в 3000 раз больше. Это одна из самых быстро вращающихся звёзд, известных нам! Она вращается так быстро, что её экваториальный радиус на 56% больше полярного, а температура на полюсе – поскольку он гораздо ближе к ядру – на 10 000 К больше. Но она находится довольно далеко от нас, в 139 световых годах.

    9. Бетельгейзе . Красный гигант из созвездия Ориона, Бетельгейзе была яркой и горячей звездой класса О, пока у неё не кончился водород и она не перешла на гелий. Несмотря на низкую температуру в 3500 К, она более чем в 100 000 раз ярче Солнца, поэтому она и входит в десятку ярчайших, несмотря на то, что находится в 600 световых годах. В следующие миллион лет Бетельгейзе превратится в сверхновую, и временно станет ярчайшей звездой в небе, возможно, видимой и днём.

    8. Процион . Звезда сильно отличается от рассмотренных нами. Процион – скромная звезда F-класса, всего на 40% больше Солнца, и находится на грани исчерпания водорода в ядре – то есть, это субгигант в процессе эволюции. Она примерно в 7 раз ярче Солнца, но находится всего в 11,5 световых годах от нас, поэтому может быть ярче почти всех, кроме семи, звёзд на нашем небе.

    7. Ригель . В Орионе Бетельгейзе не самая яркая из звёзд – этого отличия удостаивается Ригель, ещё более удалённая от нас звезда. Она находится в 860 световых годах, и при температуре всего в 12 000 градусов, Ригель не относится к звёздам главной последовательности – это редкий голубой сверхгигант! Она в 120 000 раз ярче Солнца, и светит так ярко не из-за расстояния от нас, но из-за своей собственной яркости.

    6. Капелла . Это странная звезда, поскольку, на самом деле – это два красных гиганта температурой, сравнимой с солнечной, но при этом каждый из них примерно в 78 раз ярче Солнца. На расстоянии в 42 световых года именно комбинация из собственной яркости, относительно небольшого расстояния и того факта, что их двое, позволяет Капелле быть в нашем списке.

    5. Вега . Самая яркая звезда из Летне-осеннего треугольника, дом пришельцев из х/ф «Контакт». Астрономы использовали её как стандартную звезду «нулевой магнитуды». Она находится всего в 25 световых годах от нас, принадлежит к звёздам главной последовательности, и одна из ярчайших известных нам звёзд класса А, а также довольно молодая, возрастом всего 400-500 млн лет. При этом она в 40 раз ярче Солнца, и пятая по яркости звезда на небе. И из всех звёзд северного полушария Вега уступает лишь одной звезде…

    4. Арктур . Оранжевый гигант, на эволюционной шкале находится где-то между Проционом и Капеллой. Это ярчайшая звезда северного полушария, и её легко найти по «ручке» ковша Большой Медведицы. Она в 170 раз ярче, чем Солнце, и, следуя эволюционному пути, может стать ещё ярче! Она всего в 37 световых годах от нас, и ярче её только три звезды, все расположенные в южном полушарии.

    3. Альфа Центавра . Это тройная система, в которой основной член очень похож на Солнце, и сам по себе тусклее, чем любая звезда из десятки. Но система Альфа Центавра состоит из ближайших к нам звёзд, поэтому её расположение влияет на её видимую яркость – ведь до неё всего 4,4 световых года. Совсем не то, что №2 в списке.

    2. Канопус . Сверхгигант белого цвета, Канопус в 15 000 раз превышает по яркости Солнце, и это вторая из ярчайших звёзд в ночном небе, несмотря на расстояние в 310 световых лет от нас. Она в десять раз массивнее Солнца и в 71 раз больше – неудивительно, что она светит так ярко, но до первого места она добраться не смогла. Ведь самая яркая звезда в небе, это…

    1. Сириус . Она в два раза ярче Канопуса, и наблюдатели из северного полушария часто могут увидеть её зимой, восходящую за созвездием Ориона. Она часто мерцает, так как её яркий свет может проникать через нижние слои атмосферы лучше, чем свет других звёзд. Она всего в 8,6 световых годах от нас, но это звезда класса А, в два раза массивнее и в 25 раз ярче Солнца.

    Вас может удивить, что первыми в списке стоят не самые яркие и не самые близкие звёзды, а скорее комбинации из достаточной яркости и достаточно малого расстояния для того, чтобы сиять ярче всех. У звёзд, расположенных в два раза дальше, яркость в четыре раза меньше, поэтому Сириус светит ярче Канопуса, который светит ярче Альфа Центавра, и т.д. Что интересно, карликовых звёзд класса М, к которому принадлежат три из каждых четырёх звезд Вселенной, в этом списке нет вовсе.

    Что можно вынести из этого урока: иногда вещи, которые кажутся нам наиболее выделяющимися и наиболее очевидными, оказываются самыми необычными. Распространённые вещи бывает найти гораздо сложнее, но это значит, что нам стоит улучшать наши методы наблюдений!

    Видимая яркость

    Посмотрите на небо ночью. Скорее всего вы увидите десяток-полтора очень ярких звезд (зависит от сезона и вашего местоположения на Земле), несколько десятков звезд потусклее и много-много совсем тусклых.

    Яркость звезд - это их древнейшая характеристика, замеченная человеком. Еще в древности люди придумали меру для яркости звезд - "звездную величину". Хотя она и называется "величиной", речь, конечно, идет не о размере звезд, а только об их воспринимаемой глазом яркости. Некоторым ярким звездам присвоили первую звездную величину. Звездам, которые выглядели на определенную величину тусклее - вторую. Звездам, которые выглядели на эту же величину тусклее предыдущих - третью. И так далее.

    Обратите внимание, что чем ярче звезда, тем меньше звездная величина. Звезды первой величины - далеко не самые яркие на небе. Понадобилось ввести нулевую звездную величину и даже отрицательные. Возможны и дробные звездные величины. Самые тусклые звезды, которые видит человеческий глаз - звезды шестой величины. В бинокль можно увидеть до седьмой, в любительский телескоп - до десятой-двенадцатой, а современный орбитальный телескоп "Хаббл" добивает до тридцатой.

    Вот звездные величины наших знакомых звезд: Сириус (-1,5), Альфа Центавра (-0,3), Бетельгейзе 0,3 (в среднем, потому что переменная). Всем известные звезды Большой Медведицы - звезды второй звездной величины. Звездная величина Венеры может доходить до (-4,5) - ну очень яркая точка, если повезет увидеть, Юпитера - до (-2,9).

    Так и измеряли яркость звезд много веков, на глазок, сравнивая звезды с эталонными. Но потом появились беспристрастные приборы, и обнаружился интересный факт. Что такое видимая яркость звезды? Ее можно определить как количество света (фотонов) от этой звезды, которое попадает к нам в глаз одновременно. Так вот, оказалось, что шкала звездных величин - логарифмическая (как и все шкалы, основанные на восприятии органов чувств). То есть разница в яркости на одну звездную величину - это разница в количестве фотонов в два с половиной раза. Сравните, например, с музыкальным звукорядом, там то же самое: разница в высоте на октаву - это разница в частоте в два раза.

    Измерение видимой яркости звезд в звездных величинах по-прежнему используется при визуальных наблюдениях, значения звездных величин заносят во все астрономические справочники. Оно удобно, например, для быстрой оценки и сравнения яркости звезд.

    Мощность излучения

    Та яркость звезд, которую мы видим глазами, зависит не только от параметров самой звезды, но и от расстояния до звезды. Например, небольшой, но близкий Сириус для нас выглядит ярче, чем далекий сверхгигант Бетельгейзе.

    Для изучения звезд, конечно, нужно сравнивать яркости, не зависящие от расстояния. (Вычислить их можно, зная видимую яркость звезды, расстояние до нее и оценку поглощения света в данном направлении.)

    Сначала в качестве такой меры использовали абсолютную звездную величину - теоретическую звездную величину, которая будет у звезды, если поместить ее на стандартное расстояние в 10 парсек (32 световых года). Но все-таки для астрофизических расчетов это величина неудобная, основанная на субъективном восприятии. Куда удобнее оказалось измерять не теоретическую видимую яркость, а вполне реальную мощность излучения звезды. Эту величину назвали светимостью и измеряют в светимостях Солнца, светимость Солнца принимают за единицу.

    Для справки: светимость Солнца - 3,846*10 в двадцать шестой степени ватт.

    Диапазон светимостей известных звезд огромен: от тысячных (и даже миллионных) долей солнечной до пяти-шести миллионов.

    Светимости известных нам звезд: Бетельгейзе - 65 000 солнечных, Сириус - 25 солнечных, Альфа Центавра А - 1,5 солнечных, Альфа Центавра B - 0,5 солнечных, Проксимы Центавра - 0.00006 солнечных.

    Но поскольку к разговору о яркости мы перешли к разговору о мощности излучения, следует учесть, что одно совсем не связано с другим однозначно. Дело в том, что видимая яркость измеряется только в видимом диапазоне, а звезды излучают далеко не только в нем одном. Мы знаем, что наше Солнце не только светит (видимым светом), но и греет (инфракрасное излучение) и вызывает загар (ультрафиолетовое излучение), а более жесткое излучение задерживается атмосферой. У Солнца максимум излучения приходится точно на середину видимого диапазона - что неудивительно: наши глаза в процессе эволюции настраивались именно на солнечное излучение; по этой же причине Солнце в безвоздушном пространстве выглядит абсолютно белым. Но у более холодных звезд максимум излучения сдвинут в красную, а то и в инфракрасную область. Имеются очень холодные звезды, например R Золотой Рыбы, большая часть излучения которых находится в инфракрасной области. У более горячих звезд, наоборот, максимум излучения сдвинут в голубую, фиолетовую или даже ультрафиолетовую область. Оценка мощности излучения таких звезд по видимому излучению будет еще более ошибочна.

    Поэтому используют понятие "болометрическая светимость" звезды, т.е. включающая излучение во всех диапазонах. Болометрическая светимость, как понятно из вышесказанного, может заметно отличаться от обычной (в видимом диапазоне). Например, обычная светимость Бетельгейзе - 65 000 солнечных, а болометрическая - 100 000!

    Что определяет мощность излучения звезды?

    Мощность излучения звезды (а значит, и яркость) зависит от двух основных параметров: от температуры (чем горячее, тем больше энергии излучается с единицы площади) и от площади поверхности (чем она больше, тем больше энергии может излучить звезда при той же температуре).

    Из этого следует, что самыми яркими звездами во Вселенной должны быть голубые гипергиганты. Это действительно так, такие звезды называют "яркими голубыми переменными". Их, к счастью, немного и они все очень далеко от нас (что крайне нелишне для белковой жизни), но к ним относятся знаменитые "Звезда Пистолет", Эта Киля и прочие чемпионки Вселенной по яркости.

    Следует иметь в виду, что хотя яркие голубые переменные - действительно самые яркие известные звезды (светимости в 5-6 миллионов солнечных), они не самые большие. Красные гипергиганты гораздо больше голубых, но они менее яркие из-за температуры.

    Отвлечемся от экзотических гипергигантов и посмотрим на звезды главной последовательности. В принципе, процессы, идущие во всех звездах главной последовательности, сходны (различно распределение зон излучения и зон конвекции в объеме звезды, но пока весь термоядерный синтез идет в ядре, это не играет особой роли). Поэтому единственным параметром, определяющим температуру звезды главной последовательности, является масса. Вот так просто: чем тяжелее, тем горячее. Размеры звезд главной последовательности тоже определяются массой (по той же причине схожести строения и идущих процессов). Вот и получается, что чем тяжелее, тем больше и горячее, то есть самые горячие звезды главной последовательности - они же и самые большие. Помните картинку с видимыми цветами звезд? Она очень хорошо иллюстрирует этот принцип.

    А это значит, что самые горячие звезды главной последовательности одновременно и самые мощные (яркие), и чем меньше их температура, тем меньше светимость. Поэтому главная последовательность на диаграмме Герцшпрунга-Рассела и имеет форму диагональной полосы из верхнего левого угла (самые горячие звезды - самые яркие) до правого нижнего (самые маленькие - самые тусклые).

    Прожекторов меньше, чем светлячков

    Есть еще одно правило, связанное с яркостью звезд. Оно было выведено статистически, а потом получило объяснение в теории эволюции звезд. Чем ярче звезды, тем меньше их количество.

    То есть тусклых звезд гораздо больше, чем ярких. Ослепительных звезд спектрального класса O совсем немного; звезд спектрального класса B заметно побольше; звезд спектрального класса A еще больше, и так далее. Причем с каждым спектральным классом количество звезд увеличивается экспоненциально. Так что самым многочисленным звездным населением Вселенной являются красные карлики - самые маленькие и тусклые звезды.

    А из этого следует, что наше Солнце - далеко не "рядовая" звезда по мощности, а очень даже приличная. Таких звезд, как Солнце, известно сравнительно мало, а более мощных - и того меньше.

    Светимость

    Долгое время астрономы полагали, что различие видимого блеска звёзд связано только с расстоянием до них: чем дальше звезда, тем менее яркой она должна казаться. Но когда стали известны расстояния до звёзд, астрономы установили, что иногда более далёкие звёзды имеют больший видимый блеск. Значит, видимый блеск звёзд зависит не только от их расстояния, но и от действительной силы их света, то есть от их светимости. Светимость звезды зависит от размеров поверхности звёзд и от её температуры. Светимость звезды выражает её истинную силу света по сравнению с силой света Солнца. Например, когда говорят, что светимость Сириуса равна 17, это значит, что истинная сила его света больше силы света Солнца в 17 раз.

    Определяя светимости звёзд, астрономы установили, что многие звёзды в тысячи раз ярче Солнца, например, светимость Денеба (альфа Лебедя) - 9400. Среди звёзд есть и такие, которые излучают в сотни тысяч раз больше света, чем Солнце. Примером может служить звезда, обозначаемая буквой S в созвездии Золотой Рыбы. Она светит в 1 000000 раз ярче Солнца. Другие звёзды имеют одинаковую или почти одинаковую с нашим Солнцем светимость, например, Альтаира (Альфа Орла) -8. Существуют звёзды, светимость которых выражается тысячными долями, то есть их сила света в сотни раз меньше, чем у Солнца.

    Цвет, температура и состав звезд

    Звёзды имеют различный цвет. Например, Вега и Денеб - белые, Капелла -желтоватая, а Бетельгейзе - красноватая. Чем ниже температура звезды, тем она краснее. Температура белых звёзд достигает 30 000 и даже 100 000 градусов; температура жёлтых звёзд составляет около 6000 градусов, а температура красных звёзд - 3000 градусов и ниже.

    Звёзды состоят из раскалённых газообразных веществ: водорода, гелия, железа, натрия, углерода, кислорода и других.

    Скопление звезд

    Звёзды в огромном пространстве Галактики распределяются довольно равномерно. Но некоторые из них всё же скапливаются в определённых местах. Разумеется, и там расстояния между звёздами всё равно очень велики. Но из-за гигантских расстояний такие близко расположенные звёзды выглядят как звёздное скопление. Поэтому их так называют. Самым известным из звёздных скоплений являются Плеяды в созвездии Тельца. Невооруженным глазом в Плеядах можно различить 6-7 звезд, расположенных очень близко друг к другу. В телескоп их видно более сотни на небольшой площади. Это и есть одно изскоплений, в котором звезды образуют более или менее обособленную систему, связанную общим движением в пространстве. Диаметр этого звездного скопления около 50 световых лет. Но даже и при видимой тесноте звезд в этом скоплении они на самом деле достаточно далеки друг от друга. В этом же созвездии, окружая его главную - самую яркую - красноватую звезду Аль-дебаран, находится другое, более разбросанное звездное скопление - Гиады.

    Некоторые звездные скопления в слабые телескопы имеют вид туманных, размытых пятнышек. В более сильные телескопы эти пятнышки, особенно к краям, распадаются на отдельные звезды. Большие телескопы дают возможность установить, что это особенно тесные звездные скопления, имеющие шаровидную форму. Поэтому подобные скопления получили название шаровых. Шаровых звездных скоплений сейчас известно больше сотни. Все они находятся очень далеко от нас. Каждое из них состоит из сотен тысяч звёзд.

    Вопрос о том, что представляет собой мир звезд, по-видимому является одним из первых вопросов, с которым столкнулось человечество еще на заре цивилизации. Любой человек, созерцающий звездное небо, невольно связывает между собой наиболее яркие звезды в простейшие фигуры - квадраты, треугольники, кресты, становясь невольным создателем своей собственной карты звездного неба. Этот же путь прошли и наши предки, делившие звездное небо на четко различимые сочетания звезд, называемые созвездиями. В древних культурах мы находим упоминания о первых созвездиях, отождествляемых с символами богов или мифами, дошедшие до нас в форме поэтических названий - созвездие Ориона, созвездие Гончих псов, созвездие Андромеды и т.д. Эти названия как бы символизировали представления наших предков о вечности и неизменности мироздания, постоянстве и неизменности гармонии космоса.

    Как долго может жить звезда? Для начала давайте определимся: под временем жизни звезды мы подразумеваем ее способность осуществлять ядерный синтез. Потому что «труп звезды» может долго висеть и после окончания синтеза.

    Как правило, чем менее массивна звезда, тем дольше она будет жить. Звезды с наименьшей массой - это красные карлики. Они могут быть с массой от 7,5 до 50 процентов солнечной. Все, что менее массивно, не может совершать ядерный синтез - и не будет звездой. Современные модели предполагают, что самые мелкие красные карлики могут светить до 10 триллионов лет. Сравните это с нашим Солнцем, синтез в котором будет длиться приблизительно 10 миллиардов лет - в тысячу раз меньше. После синтеза большей части водорода, согласно теории, легкий красный карлик станет голубым карликом, а когда остатки водорода будут исчерпаны, синтез в ядре остановится, и карлик станет белым.

    Самые старые звезды


    Самые старые звезды - это, получается, те, которые сформировались сразу после Большого Взрыва (около 13,8 миллиардов лет назад). Астрономы могут оценить возраст звезд, глядя на их звездный свет - это подсказывает им, сколько каждого элемента находится в звезде (например, водорода, гелия, лития). Самые старые звезды, как правило, состоят в основном из водорода и гелия, и очень небольшая часть массы отведена более тяжелым элементам.

    Самая старая из наблюдаемых звезд - это SMSS J031300.36-670839.3. О ее открытии сообщили в феврале 2014 года. Ее возраст оценивается в 13,6 миллиарда лет, и это все еще не одна из первых звезд. Такие звезды еще не обнаружены, но они точно могут быть. Красные карлики, как мы отмечали, живут триллионы лет, однако их весьма сложно обнаружить. В любом случае, даже если такие звезды и есть, искать их - как иголку в стоге сена.

    Самые тусклые звезды


    Какие звезды самые тусклые? Прежде чем мы ответим на этот вопрос, давайте разберемся, что такое «тусклый». Чем дальше вы от звезды, тем тусклее она выглядит, поэтому нам просто нужно убрать расстояние как фактор и измерить ее яркость, или общее количество энергии, излучаемое звездой в виде фотонов, частиц света.

    Если мы ограничимся звездами, которые все еще в процессе синтеза, то самая низкая светимость - у красных карликов. Самой холодной звездой с самой низкой светимостью в настоящее время является красный карлик 2MASS J0523-1403. Чуть меньше света - и мы попадем в царство коричневых карликов, которые уже не являются звездами.

    Еще могут быть остатки звезд: белые карлики, нейтронные звезды и . Насколько тусклыми они могут быть? Белые карлики чуть светлее, но остывают в течение долгого времени. Через определенное время они превращаются в холодные куски угля, практически не излучающие свет - становятся «черными карликами». Чтобы остыть, белым карликам нужно очень много времени, поэтому их пока просто нет.

    Астрофизики пока не знают, что происходит с веществом нейтронных звезд, когда они остывают. Наблюдая за сверхновыми в других галактиках, они могут предположить, что в нашей галактике должно было сформироваться несколько сотен миллионов нейтронных звезд, однако пока была зафиксирована лишь малая часть от этого числа. Остальные должны были остыть настолько, что стали попросту невидимыми.

    А что насчет черных дыр в глубоком межгалактическом пространстве, на орбите которых ничего нет? Они все еще выделяют немного излучения, известного как излучение Хокинга, но его не так много. Такие одинокие черные дыры, наверное, светятся меньше, чем остатки звезд. Существуют ли они? Возможно.

    Самые яркие звезды


    Самые яркие звезды также имеют свойство быть самыми массивными. Также они имеют обычай быть звездами Вольфа-Райе, что означает, что они горячие и сливают много массы в сильный звездный ветер. Самые яркие звезды также не живут особо долго: «живи быстро, умри молодым».

    Самой яркой на сегодняшний день звездой (и самой массивной) считается светило R136a1. О ее открытии было объявлено в 2010 году. Это звезда Вольфа-Райе со светимостью примерно в 8 700 000 солнечной и массой в 265 раз большей, чем наша родная звезда. Когда-то ее масса составляла 320 солнечных.

    R136a1 фактически является частью плотного скопления звезд под названием R136. По словам Пола Кроутера, одного из первооткрывателей, «планетам нужно больше времени для формирования, чем такой звезде - жить и умереть. Даже если бы там были планеты, никаких астрономов на них не было бы, потому что ночное небо было таким же ярким, как и дневное».

    Самые крупные звезды


    Несмотря на огромную массу, R136a1 - не самая большая звезда (по размерам). Есть много звезд побольше, и все они красные сверхгиганты - звезды, которые всю жизнь были намного меньше, пока не закончился водород, не начал синтезироваться гелий, не началось повышение температуры и расширение. Наше Солнце в конечном итоге тоже ожидает такая судьба. Водород закончится и светило расширится, превратившись в красный гигант. Чтобы стать красным сверхгигантом, звезде нужно быть в 10 раз массивнее, чем наше Солнце. Фаза красного сверхгиганта обычно короткая, длится всего от нескольких тысяч до миллиарда лет. Это немного по астрономическим меркам.

    Наиболее известные красные сверхгиганты - это Альфа Антареса и Бетельгейзе, однако и они довольно малы по сравнению с самыми крупными. Найти самый большой красный сверхгигант - весьма бесплодная затея, потому что точные размеры таких звезд весьма трудно оценить наверняка. Самые крупные должны быть в 1500 раза шире Солнца, а может и больше.

    Звезды с самыми яркими взрывами


    Высокоэнергетические фотоны называются гамма-лучами. Они рождаются в результате ядерных взрывов, поэтому отдельные страны запускают специальные спутники для поиска гамма-лучей, вызванными ядерными испытаниями. В июле 1967 года такие спутники за авторством США обнаружили взрыв гамма-лучей, который не был вызван ядерным взрывом. С тех пор было обнаружено еще много подобных взрывов. Они, как правило, непродолжительны, длятся всего от нескольких миллисекунд до нескольких минут. Но очень яркие - намного ярче самых ярких звезд. Источник их находится не на Земле.

    Что вызывает взрывы гамма-лучей? Догадок масса. Сегодня большинство предположений сводится к взрывам массивных звезд (сверхновых или гиперновых) в процессе превращения в нейтронные звезды или черные дыры. Некоторые гамма-всплески вызваны магнетарами, своего рода нейтронными звездами . Другие гамма-всплески могут быть результатом слияния двух нейтронных звезд в одну или падения звезды в черную дыру.

    Самые крутые бывшие звезды


    Черные дыры - это не звезды, но их останки - однако их забавно сравнивать со звездами, поскольку такие сравнения показывают, насколько невероятными могут быть и те и другие.

    Черная дыра - это то, что образуется, когда гравитация звезды достаточно сильная, чтобы преодолеть все другие силы и заставить звезду коллапсировать саму в себя до точки сингулярности. С ненулевой массой, но нулевым объемом такая точка в теории будет обладать бесконечной плотностью. Однако бесконечности в нашем мире встречаются редко, поэтому у нас просто нет хорошего объяснения тому, что происходит в центре черной дыры.

    Черные дыры могут быть чрезвычайно массивными. Черные дыры, обнаруженные в центрах отдельных галактик, могут быть в десятки миллиардов солнечных масс. Более того, материя на орбите сверхмассивных черных дыр может быть очень яркой, ярче всех звезд галактик. Вблизи черной дыры могут быть также мощные джеты, движущиеся почти со скоростью света.

    Самые быстродвижущиеся звезды


    В 2005 году Уоррен Браун и другие астрономы из Гарвард-Смитсоновского центра астрофизики объявили об открытии настолько быстро движущейся звезды, что она вылетела из Млечного Пути и никогда не вернется. Ее официальное название - SDSS J090745.0+024507, но Браун назвал ее «звездой-изгоем».

    Были обнаружены и другие стремительные звезды. Они известны как гиперзвуковые звезды (hypervelocity stars), или сверхбыстрые звезды. По состоянию на середину 2014 года было обнаружено 20 таких звезд. Большинство из них, похоже, приходит из центра галактики. Согласно одной из гипотез, пара тесно связанных звезд (бинарная система) прошла рядом с черной дырой в центре галактики, одна звезда была захвачена черной дырой, а другая - выброшена с высокой скоростью.

    Есть звезды, которые движутся еще быстрее. На самом деле, говоря в общем, чем дальше звезда от нашей галактики, тем быстрее она удаляется от нас. Это связано с расширением Вселенной, а не движением звезды в космосе.

    Самые переменные звезды


    Яркость многих звезд сильно колеблется, если смотреть на них с Земли. Они известны как переменные звезды. Их много: в одной только галактике Млечный Путь насчитано около 45 000 таких.

    По словам профессора астрофизики Коэля Хелье, самыми переменными из таких звезд являются катаклизмические, или взрывные, переменные звезды. Их яркость может увеличиваться на фактор 100 в течение дня, уменьшаться, снова увеличиваться и так далее. Такие звезды пользуются популярностью у астрономов-любителей.

    Сегодня у нас есть хорошее понимание того, что происходит с катаклизмическими переменными звездами. Они представляют собой бинарные системы, в которых одна звезда - обычная, а другая представляет собой белый карлик. Материя обычной звезды падает на аккреционный диск, который вращается вокруг белого карлика. После того как масса диска будет достаточно высокой, начинается синтез, в результате чего наблюдается увеличение яркости. Постепенно синтез иссякает и процесс начинается снова. Иногда белый карлик разрушается. Вариантов развития хватает.

    Самые необычные звезды


    Некоторые виды звезд весьма необычны. Они необязательно должны отличаться экстремальными характеристиками вроде светимости или массы, они просто странные.

    Как, например, объекты Торна-Житков. Названы они в честь физиков Кипа Торна и Анны Житков, которые впервые предположили их существование. Их идея заключалась в том, что нейтронная звезда может стать ядром красного гиганта или сверхгиганта. Идея невероятная, но… такой объект недавно был обнаружен.

    Иногда две большие желтые звезды кружат настолько близко друг к другу, что независимо от материи, которая находится между ними, похожи на гигантский космический арахис. Известны только две такие системы.

    Звезда Пшибыльского иногда приводится как пример необычной звезды, потому что ее звездный свет отличается от света любой другой звезды. Астрономы измеряют интенсивность каждой длины волны, чтобы выяснить, из чего состоит звезда. Обычно это не вызывает затруднений, однако ученые до сих пор пытаются понять спектр звезды Пшибыльского.

    По материалам listverse.com